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The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.
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implied, of NASA or the United States Government.
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INTERNAL 29 May 1987
MEMORANDOM

To: Dr. Jani

From: Bill Othon

Re: Implementation of Vision Sensor algorithms received from
Rice University

I have 1looked over the first package of C-language routines
received from Rice. The package includes 12 routines involved in
wireframe construction and identification. Also, there is code
which defines two wireframe objects, a ball and a box, and data

files associated with the C files.

~ A driver routine was included in the files to run many, but not

all, the 'vision' routines. The driver called the following
routines:
1) transfor.c: rotates and translates a given wireframe object.

The rotation and translation parameters are user-input, and the
object is defined in “database.c'. The input object is changed,
but the original orientation is still available in 'database.c’'.

2) wiredraw.c: draws a 2D image of a given 3D wireframe object
on a tektronics-like terminal. Hidden faces are identified by
evaluating the y-component (perpendicular to image plane) of the
points making up a given face. If the y-component is larger than
a certain set value, the face associated with the point is
defined as not visible.

3) wiregnr.c : converts a 3D wireframe object into a 2D image
which is a projection of the original (rotated) object. Again,
non-visible faces are determined and not included in the image.
The total number of visible faces and edges is determined, and
edge connectivity among the faces is defined (ie. if two faces
share an edge, variable = 1, else variable = 0).



4) obinit.c : calculates the relationship between the faces
of the original rotated object. Calculates angles between the
normals of the faces, and the moments, invariants, and tensors of

each face. This information is stored in the object data
structure.
5) owmatch.c @ conducts the actual comparision between the

predefined 3D object in the database and the 2D rotated image of
the object. For each face on the object, the moment invariant of
the object face is compared to the moment invariant of a given
face of the 2D image. If the invariants are sufficiently close
(arbitrary), the object and image faces are input to the 'grow'
subroutine, the heart of the comparison process. ‘'grow' is a
recursive routine which tries to match the input faces (or root
faces) with their surrounding, adjecent faces. In other words, if
both the object root face and image root face are surrounded by
the same faces (as determined by the algorithm), the image is
assumed to be a subgraph of the object. The output of the
subroutine is Jjust a (match/no match). No orientation
identification algorithms have been identified. It may be
possible to reverse the role of the transform subroutine, so
instead of using user-input parameters to get a transformed
object, these parameters may be backed out from an image. More
work is being conducted to fully understand the comparision
procedure.

These programs represent all the algorithms used by the driver
routine. It seems that the purpose of this driver is to varify

the ability of the comparision algorithm to successfully identify

a known object.

Two other programs were included in the software package.
“ipc.c' and 'gipc.c' are the image point coorespondance routines,
defined by a paper authored by Rice's Sunil Fotedar and Dr. Rue
de Figueiredo. These routines are used in the determination of
motion parameters of a moving object from moving camera data.
The documentation identifies a number of case options and
associated algorithms involved in the operation of these codes,

but these files were not included in the package from Rice.



what I plan to do in the short term is remove the wireframe
building routines from the driver code and run the program
without graphics, to see if it works. Actually, the graphics
associated with the driver are for display purposes only, and

input no information to the driver routine.

Apparently, we still need to receive algorithms which can read a
2D image (from graphics) and can convert the image into a form
which can be used to compare it to models in the object library.
Also, we need to find out which algorithms should be used to
calculate the orientation of an object, once the associated image

has been identified.

Attached to this memo is information on each of the routines

delivered by Rice.
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‘he oblect +i1les all routines shown here tercept +or driver routines)
ve tept in an archive library /mnt/bamieh/cleanprod/lib. This

rame should be used 1n the with the coc comend.

11l routines were complled with the —-g option for debuging.
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amieh.h : This file contains all the headers used. It comtains
Lype defimitions, and also stdic andg math.h. In this
directary 1t is used by #include "bamieh.h'".

atabase.c: The database which contains the inmitial obiect
diecritptions, New oblects are added here. aAn obiect
1s declared az an extern polyhedron variable, and
any programs that use the object should be compiled
and linked to the database.

—ansform.c: contains the routine
polyhedron transform(dx,.dz,theta,phi,psi,oblect)
float dx,dz,theta,phi,psi;
polvhedron obiect:
which rotates and tramnslates & polvyhedron "obijiect"
1N Z—space by transtorming the coordinates 1n
the arreay vertll, the other parameters cof a polyhedron
are invariant.

dx:,dz 1 translation in ths x and = axes respectively.

theta,phi: spherical coordinates of the azis of rotation
theta is the eangle in the x,v plane.

p=1 ¢ the magnitude of the counterclochwise rotation
about the axis.

obiect : the structure contasininag the polyhedron.

all angles should be in degrees. transtorm returns
& polyhedron structure which 1¢ the rotated obiject.
mEwW.C: Contains the function ORIGINAL PACE IS

, UALITY
hdraw(hoffset ,voftset ,wndsize,obiect) OF POCR Q
int hoffset,voffset ,wndesice;
palytedron object:

which drawe a polyhedron "cbject” on a tektronix
like terminal, essuming orthooonal rmraiactisn —sn dbe



olymnts.c

avariants.c:

Msor.C

. B Y LlitW
Yy @.18 at the ., 1mage plane.
The screen ori1ain 1g &t the lower ledt-

tand corner, the vertical anmd horizontal scales are
759 and 1024 respectively. The obilect 18 drawn 1n &
square window specified by the ftollowing parameters:

hoffset (vofieet: the horizontal anmd vertical coordinates
ot the window origin, respectively.

wiidsilze : the length ot the window side.

This routine does hidden linme removal +or a convex
cbiect.

Contains
draw.c (hof fset,voffeet ,wndsize,obiect)

Same as hdraw but does not do hidden limes.

Contains

polyvagons polymnts {(face)

polvgon? face;

which calculates the momentes of & ZD polygon "face"
and returns the same 2D polygorn but with the
moments entries appropriatly +filled. The highest
order of moments calculated 1is determined by
MORDER i the file bamieh.h, thise constant alsc
eftects the type detenitions.

Cantains

polyogons i1nvariante (face)
polyvgone face;

which calculates the invariants given the moments
which should already be in face. It returns the
original 2D polygon face with the invariants in
their proper places.

Contalines

float Ttensor (face,index)s

polyvgonld tace; 1nt i1nde:; ORKHNAL PAGE!S
float Vtensor (face.index): OF POOR QUALITY

polygonZ face:; int inde:x:

whiich calculates the tensore T and V (see paper).
index specifies which component af the tensor is to be
calculeted, either 1 or Z.

These tensorzs are calculated in the most brute torce
way imaginable, if they become a bottleneck, they
probebly can be improved substantialy.



r:nxt,c: Caoantains

wireframe winit CGlmmap) /% wireframe 1nitialicer #/
wireframe i1mmap;

Imtialices wiredframe by symmetrizrinag the edges matriy.
It also adds the moments 1nvariaents and tensors of every
face 1n the wireframe. The original wireframe plus every
thing added 1€ retwned.

Wbinmit.c Cantains

polyhedron obinit (obiect) /¥ cbjiect initializer +/
polvyhedron obiect:s

Intitializes the oblrect by symmetrizing the edgee matrix
and adding the moments, i1nvariants, and tensors to every
tace. These last there are computed in the plane 1in
which each face lies.

The 1nitialized object ie returned.

1regnt s Contains

wireframe wiregnr (theta,phi,pei,object)
float theta,phi,psi;
polyhedron cbiects

which genterates & wireframe of a polyhedron "object®
viewd with a rotation ot theta,phi,psi. The function
returne the wireframe it generates. To find the visible
taces it basically uses a code similar to that of hdraw,
except that faces that are only very elightly viegible
(i.e. almost perpendicular to the image plane) are not
included in the wireframe.

redraw.c: Comntaine

wiredréw(theta,phi,psi,object)
tloat theta,phi,psi;
polyhedron obiects

This is similar to hdraw except that i1t draws the
object exactly as the wireframe generator “wireagnt
sees 1t, 1.e. faces that are only slightly vieible

are not included. The arguments are the same as hdraw.

match.c: Contains "obiect to wireframe matching"
1
correspondence owmatch (chjisct,immap) CRIGINAL PACE is
polyhedron obliect; OF POGR QuALiTY

wireframe immag;

which looke for & posszible match between the obijiect and
a wireframa. The results of the match 1s returned as a
correspondence struct.



mtest.c A driver routine. Self explanatory.

ORIGINAL PACE IS
OF POOR QUALITY



e ——— -

June 17, 1987




— inam

Simulation of Robotics Space Operations
Principal Investigator: Yashvant Jani
LinCom Corporation
Computer-based simulations of activities in low earth orbit
play a wvital role 4in the research and development of space
missions, especially generation scenarios. In order to
successfully plan and analyst future space activities, these
simulations will be required to model and integrate vision and
robotics operations with vehicle dynamics, and proximity
operations procedures. The basic objective of this project is to
configure and enhance the orbital operations simulation (00S) as

a testbed for robotics space operations.

The vision sensor is comprised of many subsystems, which
will; 1) Detect the presence of orbiting space vehicles, using
camera data, 2) Identify an unknown vehicle being scanned by a
camera, 3) Identify the position, attitude, and rates of a

scanned object, and 4) Track a vehicle along its flight path.

Each of these capabilities could be used for a wide range of
orbital operations, including proximity operations of vehicles,
traffic control, and collision avoidance. Additionally, the
vision sensor when integrated with robotics, would allow
robotics-enhanced, free-flying vehicles, like the Orbital
Maneuvering Vehicle (OMV), to conduct autonomous missions
including vehicle repair and retrieval. By using the wvision

sensor, autonomous vehicles could identify desired targets, track

o[:'n&m —




'[_— inc;om

their motion and attitude, and dock with the target. The vision
sensor could also identify damage, and provide visual data

required for work with Remote Manipulat: System (RMS).

The vision sensor will be mathmatically wmodeled, and
included in a general orbital operations simulator, ® By
coupling the vision sensor with vehicle dynamics and the orbital
environment, the simulation will be used as a test-bed for the
development, and optimization of vision-related operations
procedures. The simulation can use a number of different orbital
vehicles during testing of vision techniques, including shuttle,
OMV, and eventually Space Station. Topics that can be explored
through simulation include range requirements, resolution
constraints, data extraction and analysis techniques, and
integration of vehicle flight software and vision-derived

environment and tracking information.

*The vision data processing algorithm will be implemented as a
flight software which can be scheduled according to the

processing requirements.
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INTERNAL 1 August 1987
MEMORANDOM

To: Dr. Jani

From: Bill Othon

Re: Status Update of Implementation of Vision Sensor algorithms
While I was on leave, the complete code for Rice's GIPC (motion
parameter determination) and MIAG (object identification)
algorithms were delivered to LinCom. The GIPC code includes a
small menu and algorithms for all methods of motion determination
outlined in the reference document. The MIAG also includes a
menu for user input. A number of object models (with vertex,
face, and edge information) were included for testing.

These codes are currently being examined and evaluated for
modifications which would be necessary before inclusion into 00S.
David and I intend to get the stand-alone versions of these codes
running, and to test output from the code with available
reference material. Thus, we can be sure the code is running
correctly before integration with 00S.

One small note: Apparantly, the computer hardware at Rice has
different capabilities and resources than the HP9000 at LinCom.
Consequently, the two algorithms are not running smoothly at this
time. Some of the arrays in the GIPC routine are dimensioned
arbitrarily large, and may be overwriting memory. This problem

is currently being examined.
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SIMULATION OF ROBOTICS SPACE OPERATIONS
STATUS OF INTEGRATION OF VISION ALGORITHMS INTO 0OOS

AUGUST 11,1987



MEETING WITH VISHAL MARKANDEY, RICE UNIVERSITY- 7/30/87

Dr. Yashvant Jani and William Othon met with Vishal
Markandey of Rice University on 7/30/87. Vishal brought with him
graphics algorithms for extracting wireframe and vertex
information from the image of an object, produced by a camera.
These routines were not fully completed, and development and
modification of these algorithms continues at Rice. However,
LinCom will begin analysis of the routines for future integration
into 00s.

A copy of a single value decomposition (SVD) routine was
given to Vishal at the meeting. David Myrick translated this SVD
routine from FORTRAN 1listing to 'C' code. The translation was
necessary because the routine was not available to LinCom, and it
was part of a prepackaged math library at Rice which could not be
transferred. The routine is used in the Generalized Image Point
Correspondence (GIPC) algorithm, which extracts motion parameters

of a moving object from information provided by a moving camera.



THREE MAIN AREAS OF VISION ALGORITHM DEVELOPMENT

Vishal described the three main areas of vision algorithm
development going on at Rice. The three main areas are: 1)
preprocessing of raw camera (pixel) data, 2) object recognition
from preprocessed data, and 3) determination of the attitude and

attitude rates of a observed object (figure 1).

1) Preprocessing

Preprocessing algorithms transform the raw camera pixel data
of a scanned object into a graphical representation of the
object. This representation can then be used by other vision
algorithms to identify the object and define its position and

attitude. There are several elements to the preprocessing phase:

NOISE REMOVAL- Every frame taken from a camera in pixel
format will have noise which is unassociated with the object
being scanned. This noise can be filtered out based on the
abruptness of the change in "gray-level" or intensity, of the
pixels. If this gray-level change is suff1c1ently abrupt from one
pixel to the next, and there is no continuity in 1nten51ty, the
pixel is defined as noise and filtered out. If the intensity from
one pixel to the next is continuous, or changing gradually, the
pixels are assumed to be part of the pictured object. A gau551an
filtering routine is used to remove the high frequency noise
(i.e. abrupt, non-continuous change in pixel intensity).

REGION GROWING- Some of the characteristics of an object,
such as wrltlng, emblems, or windows, are interpreted as polygons
by the vision algorithms. These polygons appear as dark regions
inside 1lighter areas. To prevent these polygons from being
identified as faces, a region grow1ng technique is used. Region
grow1ng increases white areas of the image, but the shape of the
region is maintained. As the routine continues through more
iterations, the shape of the image becomes more uniform.
Eventually, windows and writing are erased from the image. The
transformed image is larger, but the shape is maintained so that
identification and attitude can still be determined.

EDGE DETECTION- Edge detection involves the building of a 2D
wireframe based on the image of the sighted object. This building
can be done using vertex detection schemes (after identification
of straight lines) or contour following (to define object faces).



Both schemes use changes in gray-level to define lines or faces.
After edge detection, the image is transformed into a wireframe
image, with two levels of intensity: background and the lines of
the object.

GRAPH BUILDING~ This is the final step in preprocessing. The
various faces and vertices of the wireframe image are defined and
stored in a GRAPH STRUCTURE. The moment invariants of the
identified faces are then calculated. Together, the graph
structure and the associated moment invariant information are
known as the ATTRIBUTED GRAPH.

2) RECOGNITION

After defining the various components and invariants of the
wireframe image (whether through simulation or real camera data),
the image can be identified with an object in the object library.
The Moment Invariant/Attributed Graph algorithm (MIAG) matches
the moment invariants of the wireframe object with those of a
specific object in the object 1library. Since these moment
invariants remain constant for a given polygon, regardless of
rotations, wireframe polygons and object faces can be compared
and possible matches identified. Once the possible matches are
found, then the relationships between the "root" face and
adjacent object faces and the "root" polygon and adjacent
wireframe polygons are checked. If all adjacent faces and
polygons match, the wireframe image is defined as a subgraph of
the object, and therefore identified. Otherwise, a new object
from the library can be tested or the matching process stopped.
(see figure 2)

Currently, only polygonal shapes can be identified. A future
extension to the MIAG should allow for edges of various shapes:

circular, elliptic, etc. To do this, the graph structure must

have information about the connectivity of faces, and information



about the contours of connected faces.

3) ATTITUDE/ATTITUDE RATES

Currently, two algorithms are under development for
determination of attitude and attitude rates based on processed
camera data. These algorithms are based on different schemes, and
no comparison of efficiency, accuracy, or speed has yet been
made.

The MIAG algorithm calculates tensors based on polygon
geometry. These tensors can be used to calculate the change in
attitude between an identified camera image and an object in the
library (at some reference attitude). Also, an estimate of the
translation vector can also be determined. For information about
the algorithm, refer to "“General Moment Invariants and Their
Application to 3D Object Recognition from a Single Image" by
B. Bamieh and Prof. Rui de Figueiredo.

The second method of attitude extraction under development
is called Generalized Image Point Correspondence (GIPC). The
algorithm determines the rotation and translation (to a scale
factor) of a moving object in some reference frame, from data
provided from a moving camera. The routine requires: 1) 8 or more
unique points defined on the object, before and after motion, 2)
the transformation between the two image coordinate frames, and
3) the transformation between the original image coordinate frame
and the reference frame. This method is explained fully in the
reference "Determination of Motion Parameters of a Moving Object
From Moving Camera Data" by S. Fotedar and Prof. Rui de

Figueiredo.



——————e—

CAMERA MODEL INTEGRATION IN 00S

A software model of an OMV-based camera is being developed

at LinCom. This model will simulate the sensing capabilities and
hardware constraints of a camera. Characteristics of the camera

model will include range, field of view, and focal length.

Additionally, the camera will be integrated with a target-
tracking algorithm, to define the motion of a camera with two
gimbals (pitch and yaw).

The camera model will be used in simulations where the two-
dimensional image data is simulated and not derived from actual
camera input. The translations and rotations of the target (i.e.
camera image) will be fed directly from the dynamics routines to
a transformation routine. This routine will transform a library
model of the target (at some reference orientation) and define
the points which are visible on the 2D camera image. These data
can then be fed to the other vision algorithms for object

identification and determination of motion parameters.



CURRENT STATUS OF VISION INTEGRATION WORK AT LinCom

* The SVD routine has been translated from the FORTRAN listing
to 'C' code. The output was validated. An interface was created
between the new SVD and OOS-compatible code to be used with GIPC
algorithm.

* GIPC and MIAG codes received from Rice are currently being
tested. Comparison checks are being run between reference
document data and output from LinCom code.

* The GIPC 'C' code is being modified to match 00S code
conventions.

* Integration of validated GIPC and MIAG into vision subsystem
structures in 00S is being developed. Also being developing is a
camera model, with hardware restrictions (i.e. range, viewing
cone, etc.) and target-tracking ability.

* The preprocessing algorithms delivered by Rice (7/30) will be
analyzed. Future plans include integration of these vision
algorithms (in 00S) with graphics for data retrieval and visual
depiction of vision techniques.
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1. Introduction

The Vision program supplied to LinCom by Rice University has
been modified for use in the Orbital Operations Simulator. This
required LinCom to add a “singular value decomposition” (svd)
routine to its library. Also, several changes were made to the
Vision program itself (see Reference 1). The orginal program
invoked LINPACK routines. The program was changed to used
LinCom’'s 1linear algebra routines. To allow use of the O008's
logging functions and other routines, the program’'s array
structure was changed although it was kept conceptually the same.

The end result is a cleaner program that is 00S compatible.



2. S8ingular Value Decomposition Algorithm

The Vision algorithm requires a singular value decomposition
routine. Rice invoked a LINPACK routine which is part of their
computer library. Unfortunately, LinCom’s library was lacking in
an svd routine. A LINPACK svd routine written in FORTRAN was used
as a basis for LinCom's svd. This required that the program be
converted from FORTRAN to C. This conversion proved to be quite
tedious due to the unstructured nature of the original program.
Some of <the problems encountered included the passing of two-
dimensional arrays to subroutines expecting one-dimensional
entities, unstructured usage of GOTO statements, and mathematical
manipulations of array indeces which had to be changed to meet C
array conventions.

FORTRAN and C store arrays differently. 8ince some routines
pass two-dimensional arrays to routines expecting one-dimensional
arrays, a direct conversion was not possible. The Orbital
Operations Simulator, which is written in C, stores all arrays
one-dimensionally. Multi-dimensioned arrays are conceptually
stored columnwise, as in FORTRAN (see Fig. 1). Actual C storage
is done rowwise. Since FORTRAN stores multi-dimensional arrays
columnwise and <the 00S conceptually stores arrays columnwise,
svd was converted to store arrays conceptually columnwise. This
is done in the following manner:

x[1][J) = x[ 1 + J * Row_dimension_of_x ].

The advantages of singly-dimensioning arrays may not be
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FIGURE 1: Array Storage Methods for FORTRAN and C



intuitively obvious. The biggest advantage is that it allows the
programmer to overcome C’'s inability to allow flexible array
sizing in subroutines in which an array is passed as an argument.
In other words, when an array is received as an argument in a
subroutine, it must be declared with dimension sizes in the
second and higher dimensions. For example, the three-dimensional
double precision array "“x" passed to a subroutine must be
declared in that subroutine as follows:

double x[]1[{2nd_Dimension_8Size}[3rd_Dimension_Size] ;

Since x is actually a pointer to a string of 1linearly stored
memory, 2nd_Dimension_Size and 3rd_Dimension_Bize must be set at
compile time to tell the program how to access the array
elements. The {first dimension size need not be given. This
allows the programmer who uses singly-dimensioned arrays
flexibility to conceptually redimension arrays at execution time.
It also keeps the programmer from creating arbitrarily huge
multi-dimensional arrays in the hopes that such a monstrosity
would take care of "all" situationms.

FORTRAN array indices normally start at one whereas the C
convention 1is to start indeces at zero. In most cases, this
difference in conventions is dealt with easily. However, svd has
many array m;nipulations which require careful tracking of
indéces.

The biggest obstacle in the conversion was the "GOTO"
statement. In most cases, these were easily replaced by "IF-

THEN-ELSE" blocks. Other cases were more thought provoking. For



example, the subroutine “SNRM2" was redone with two switch state-
ments inside a while loop (see Appendix A). Elimination of the
GOTO statement results in cleaner, structured, and more readable
code. This is advantagious since structured code iz more ea=ily
converted to other languages, such as Ada.

Nevertheless, <there is now has a workable C version of svd.
The program was verified by testing matrices whose eigenvalues

were already known (see Reference 2). The two test cases are as

follows:

Case 1:
! 7 3 1 !
! 3 4 2 '
: 1 2 3 H

whose eigenvalues are 9.433551, 8.419421, and 1.147028.

Case 2:
H 4 2 S 7 !
! 2 8 5 1 '
! 3 b 12 9 !
H 7 1 9 7 '

whose eigenvalues are 23.04466, 7.450091, 3.7389112, and
-3.233881.

The svd program output for these two test cases are listed in

Appendix B.



S. The Vision Programs

Several changes were made to the original Vision program
provided by Rice University. It has been reworked to use
LinCom’s svd routine, matrix multiplier, matrix inverter, and
other routines that do basic linear algebra. The program has
also been converted to one-dimensional array storage using the
same conventions as described in the svd section. Other changes
were made to improve readability and to eliminate unnecessary
memory allocation.

Minor changes were made to the original program to allow
interfacing with LinCom’s svd routine and matrix inverter. This
temporarily gave LinCom a working version while the program was
undergoing restructuring to conform to OOS standards. The
original program arbitrarily set one-hundred as <the maximum
number of points that could be stored for a given object. This
allowed allocation of 100 by 100 size arrays. So much memory was
being allocated that the HP9000 Unix operating system killed
execution of the program. The maximum was finally reset to 25
so that the program could operate without a memory failure. This
reduced memory allocation by at least an order of magnitude.
Arbitrarily huge working matrices were being created for the sole
purpose of interfacing with LINPACK 1linear algebra routines.
Since LinCom’s linear algebra routines do not require huge
working spaces, <these temporary working matrices were eliminated
in the 00S version.

The program was changed to work with one-dimensional arrays.



This allowed direct usage of LinCom’'s linear algebra and avd
routines. It also led to better memory management since
arbitrarily huge temporary working matrices could be eliminated.
Many arrays were shrinked dramatically since their size was no
longer dependent on the LINPACK linear algebra array conventions.
For example, the array "XY" in many of the GIPC routines was
reduced from 100 by 100 to 100 by 8. The array "SF" was reduced
from 100 by 100 to 8 by 8 (see Reference 1).

In the original program, many variables and arrays were
allocated and never used. This may be due to the fact that many
of the subprograms are quite similar in function and probably
originated as copies of each other with some variables used and
others not used. Nevertheless, variables and arrays that were
originally declared and never used were eliminated. This greatly
improved the memory management situation.

Aesthetic changes were made to improve program readability.
Loops were made to conform to regular C standards. Comments are
currently being added to improve the understandability of the
program.

At its completion, the new one-dimensional version has been
run and compared with results from the old version. The new
version emulates the old version. The maximum number of object

points has been reset to 100 without killing memory.



i

4. Conclusion

There is now a clean, working version of the Vision program

that can be integrated into the 00S. There is also an svd

routine written in the C language that could be used for future

programs.






APPENDIX A
Sample FORTRAN Program With C Conversion






moag 1/ 14%:0) 198/, enrmoi.fortran Fage |

DOUBLE FRECTISION FUNCTION SNRMZ (N.Sx o INC X

INTEGER NExT

POUERLE FRECISION SX (1) ,CUTLO,CUTHI JHITEST ,SUM, XMAX . ZERU . ONE
DATA ZERD. ONE /0.0D@, 1.QDL0

DATA CUTLO, CUTHI / E.232D-11, 1.304D1Y

JIFON LGT. @ GO TO 1@
SNEM: = ZERD
GO TO Zow

1@ ASSIGN 2@ TO0 NEXT
suM = ZERO
NN = N = INCX

1 =1

& GO TO NEXT, (Z@, S0, 70, 11@)

0 IFC DABS(SX (1)) .GT. CUTLO)Y GO TO BS
ASSIGN Z@ TO NEXT
XMAX = ZERO

FHASE 1. SuM IS ZERO

S@ TFC eX(I) .EG. ZERO) GO TO zZoQ
} IF ¢ DAES(Sx (1)) .GT. CUTLD) GO TOD 8BS

FREFARE FOR FHASE 2.
b ASSIGN 78 TO NEXT
GO TO 1@%

FREFARE FOR FHASE 4,

166 I = 4

ASSIGN 11@ TO NEXT
, ) (SUM » Sx(Iy) / SX(I)
1A% XMAXx = DAEBS(SX(I))

GO TQ 115

-
=
i

FHASE Z. E&UM IS SMALL.
SCALE TO AVOID DESTRUCTIVE UNDERFLOW,

@ IF¢ DAES(SX (1)) .GT. CUTLO y» GO TO 75

COMMON CODE FOR FHASES = AND 4,
IN FHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW.

1@ IF« DRES(Sx (1)) .LE. XMax ) GO TG 115
Sl = OMNE + SUM * (XMAX / SX(I))*xZ

YMAX = DABRS(SX(I1)
GO TO Zoo
12 SUM = SUM + (EX(I)/XMAX)®*Z
GO TC Zoo
FREFARE FOR FHASE Z.
o SUM = (SUM * XMAX) % XMAX

ORIGINAL PAGE IS
OF POOR QUALITY
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10:51 199/ enrmi.fortren Fage _

FOF REAL OF D.F. SET HITEST
FOR COMFLEX SET HITEST

CUTHI /N
CUTHI/ (2#N)

HITEST = CUTHI/DBLE( N )

FHASE 2. SUM IS MID-RANGE. NO SCALING.

DG 95 J = T.NN,INCX

IF(DABS(SXx (J)) .BE. HITEST) GO TO 100
SUM = SUM + SX(J)#*2

SNRMZ = DSORT( SUM )

GO TO 20

CONT INUE
I = 1T + INCx
IF ¢ I J.LE. NN ) GO TOQ zZ@

ERD OF MaIN LOOF

COMFUTE SGUARE ROOT AND ADJUST FOR SCALING
SNRMZ = XMAX * DSORT (SUM)
COMNTINUE

RETURN
END

OF POOR QUi ity



Ava 26 16:400 1967 enrm’.c Faae

iinc]ude stdio.h: /% UNIX STANDARD INFUT AND QUTFUT */
Binc)ude “math.h /#* STANDARD MATH LIBRARY * /
detine FRE FHASE _CHECK 1 /% Check absolute value of exl11l
to see 14+ = cutlo */

idetine FHASE 1 = /* Scan rero components * 7
Fdefine FHASE _Z _AND _4 ot /* Component nonzero ard "= cutlo or
% #= ( cuth1 7/ n ) */
tdefine FHASE = 4 /* Component cutlo */
ldefine LEVEL_1 5 /% ‘mext_calc’ top level */
define LEVEL = )

detine LEVEL = 7

define LEVEL 4 =]
tIdefine LEVEL & 9
rdefine LEVEL _é& 10

ouble snrmIZd n, sx, 1ncy )

mnt N /¥ INFUT: Input vector dimernsion */
\nt 1Tyl /% INFUT: Increment of v */
louble ex[1 3 /% INFUT: Vector eu */
b

bt next_phase ; /% Flaag indicating rext_phace phasze of

! algorithm *
Ot mext_calc /¥ Flag indicating which sequential step algorithm
‘ level must execute */
kt i 3 /% {oop counter »/

L /* Loop counter */
Tt n_»_1ing: s /* Vector dimension times increment of */
#uble MMay /* Absolute value of array element *
puble hitest g /¥ cuthi / double( n ) */
puble zero = Q.0 /% Machine dependent ‘zero’ */
uble cne = 1.0@ ; /¥ Machine dependent ‘one’ */
wble cutlo = 4.441e~-16 /¥ Machine dependent */
sble cuthi = 1.204e19 : /% Machine dependent >/
uble sum /% Algorithm parameter */

{(n == @ ) return{ zero ) 3

it _phesse = FRE_FHASE_CHECK

it _cale = LEVEL _1 3

Im = zerao ;

s_incy = n % inoy g

}=tz«.

‘rr\;:)t

itcht neut_phase ) {

caze FRE_FHASE CHECHE
1f: fabes ex[1] cutlio »

next_calc = LEVEL _Z g

breal: :

CRIGHAL PAGE IS
OF POOR QUALITY



Avag ¢ 14:40 1987 enrmli.c Fage O

.
i
elece <

next_phase = FHASE 1
* ¥max = Zero 3
casze FHASE )
it ( €1 == zero ) <
next_calc = LEVEL & :

breat

else 14 fabe( exlil ) -+ cutle ) <
next _calc = LEVEL_2 :
break :

elese {

nezt_phase = F _
nert _calc = LEVEL 4
break 3

case FH&SE _Z AND_4 @

1if¥( fabs( sx(il ) * cutlo > «
next_calc = LEVEL _1 3
break 3

case FHASE_7 @

if( fabs( ex[1] » <= umax )y {
ne:xt_calc = LEVEL S ;
break

else {

sum = one + sum ¥ ( xmay /
wmax = +abs( sxl{i1l )
next_calc = LEVEL _6
break

n

#Lid ) » C xmax / sx[1]1 ) ;

..

default :
torintf (stderr,"FROGRAM FAILED IN ‘enmrZ - switch ‘nert_phase /n'
exit (1)
breai
/% end switch( next_phase ) */

1tch{ next_calc 1 {
case LEVEL 1:
SUM = SUm ¥ Mmax * xmax
case LEVEL_Z :
hitest = cuthi /7 ¢ ( double )
tord{ i =1 3 3 < n_x_incx 3 3
1f( fabs( ex[31] ) »= hitest
next_calc = LEVEL_Z ;
break i

sum = sum + sx[3] *» s3]

it next_calec !'= LEVEL_Z ) return( sgrt( sum ) ) 3



Qua 2¢ 16:40 1987 snrml.c Faae

case LEVEL T
1= 1
net phase = FHASE T .
sum = C sum / sx[il ) / 113
cas=e LEVEL 4 :
swmay = tabs( en[1]
‘ case LEVEL o
sum = sum +  ex[1]) / umax ) * ( ex[i3l , Xmas )
case LEVEL &
1 = 1 + 1ncxe
14( 1 < n_x_1incx ) break :
else {
return( xmax % sqrt( sum ) ) H

»e

default
fprintf (stderr,"FROGRAM FAILED IN sNmMry switch ‘next_cale /n") :
exit (1 ) ;
break
/* end switch( next calc ) %/

% end for( s )Y %/

AR WGE IS
omEiHAL PAG
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Appendix B
Test Results of 8YD Algoritha in C Language
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FUNCTIONAL CAMERA MODEL

INPUTS:
vehicle state from dynamics
target state from dynamics
target polygon model from object library

vertices, no. of vertices
faces, no. of faces
connectivity of faces
moment invariants of faces

ALGOTITHM:
e calculate actual target position in camera frame

e if target not previously seen
check if in range ( if not, status = “not seen” and exit )
check 1f in field of view
( if not, status = “not seen” and exit )
if in range, wait certail lag time before aquisition
( if time in range is less than lag time,
status = “not seen” and exit )
e if target previously seen but moved out of range,
lose sighting and exit

33x3% OBJECT SEEN ¥

e rotate object model from library to match vehicle dynamics
e extract wireframe

no. of faces

definition of vertices of each face

face connectivity

606% ASSUMPTIONS: 1) POLYGONAL OBJECT
2) PERFECT WIREFRAME EXTRACTION

® identify visible points of object (from wireframe)

e calculate image points based on actual object position,
coordinates of visible points in object frame, and lens
focal length



FUNCTIONAL CAMERA MODEL

OUTPUT:

wireframe for MIAG identification routine
image points for GIPC attitude determination and
range & range rate determination

CONTAINS ALL
OBJECT POLYBON | OBJECT VISION ALGORITHMS
 IDENTIFIES
MIAG VIEWED IMABE
ID ROUTINE WITH OBJECT
IREF &
m M’gF IN LIBRARY
OBJECT 1D
VEHICLE CORRELATION B/T
VEHICLE STATES _,| CAMERA IDENTIFIED
DYNAMICS MODEL m":gf:&"g“
‘ OBJECT
CALCULATES ACTUAL @ CREATES WIREFRAME 61PC e DETERMINES
YEHICLE AND TARGET WHICH MODELS ACTUAL (ATTITUDE) ATTITUDE
DYNAMICS ( “TRUTH") YEHICLE ATTITUDE (61PC) AND
* RANGE
@ DEFINES IMAGE
COORDINATES OF RANGE (?ﬁg‘g ON
VISIBLE POINTS COORDINATES)
® CALCULATES
ATTITUDE
RATES AND
RANGE RATES

CONCEPTUAL FLOW DIAGRAM OF VISION MODELS

IN 00S
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— ROBOTIC SPACE SIMULATION B

AGENDA

® OBJECTIVES

® USE OF SIMULATION

® INTEGRATION OF ROBOTICS / VISION ALGORITHMS
INTO AN ORBITAL OPERATIONS SIMULATION

® CURRENT EFFORT: INTEGRATION OF VISION
ALGORITHMS FROM RICE UNIVERSITY WITH
ORBITAL MANUVERING VEHICLE (OMV) MODEL

® PROJECT STATUS

s FUTURE EFFORT




~— ROBOTIC SPACE SIMULATION ~\

OBJECTIVES

® DEVELOP A 7£STH£D FOR INTEGRATION OF
ROBOTICS SUBSYSTEMS AND SPACE VEHICLES
SIMULATION

oo IMPLEMENT VISION/ROBOTICS ALGORITHMS
ee PERFORM SYSTEMS INTEGRATION ANALYSIS

® STUDY OPERATIONAL ASPECTS OF ROBOTIC
SPACE SYSTEMS AND MISSIONS

\ LinCom —~




r— ROBOTIC SPACE SIMULATION

USE OF SIMULATION

® PRE-FLIGHT ANALYSIS
oo DEFINITION OF MISSION REQUIREMENTS
e® PERFORMANCE ENVELOPES
oe FLIGHT ASSESSMENT

o DEVELOPMENT OF MISSION SCENARIODS

ee® OPERATIONS

e® PROCEDURES

es® INTEGRATION OF SEVERAL VEHICLES AND

SUBSYSTEMS INTO A COORDINATED SCENARIO

® INTRODUCTION OF NEW VEHICLES /7 SUBSYSTEMS

ee SPECIFICATION AND ANALYSIS

ee SUBSYSTEMS REQUIREMENTS ANALYSIS

\ LinCom —~



r— ROBOTIC SPACE SIMULATION

INTEGRATION OF ROBOTICS/VISION ALGORITHMS
INTO AN ORBITAL OPERATIONS SIMULATION

® TESTBED REQUIREMENTS

oe MODULARITY
es RAPID PROTOTYPING
o® FIDELITY

® ROBOTICS COMPONENTS IN 00S

ee VISION
ee® REMOTE MANIPULATOR SYSTEM (RMS)
o8 AUTOMATED FLIGHT /7 EXPERT SYSTEMS

\. LinCom —~
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7— ROBOTIC SPACE SIMULATION

CURRENT EFFORT

INTEGRATION OF YISION ALGORTHMS
WITH ORBITAL MANUVERING VEHICLE (OMY) MODEL

® VISION ALGORITHMS FROM RICE UNIVERSITY

ee OBJECT IDENTIFICATION
eee MOMENT INVARIANT/ATTRIBUTED GRAPH (MIAG):

oo ATTITUDE DETERMINATION

eeoe GENERALIZED IMAGE POINT CORRESPONDENCE {(GIPC):
eeoe MIAG EXTENSION (TENSORS)

e OMV MODEL

ee RIGID BODY DYNAMICS

o® REACTION CONTROL SYSTEM (RCS) JETS

®e OMV FLIGHT SOFTWARE (CONTROL SYSTEM, GUIDANCE, ETC)
o CAMERA MODEL

eee FOCAL LENGTH , RANGE , FIELD OF VIEW

ees EXTRACTION OF 2D WIREFRAME
(LOW-LEVEL IMAGE PROCESSING)

— LinCom _



.~ ROBOTIC SPACE SIMULATION

CURRENT STATUS

® ALGORITHMS IMPLEMENTATION COMPLETE
s CAMERA MODEL
®e FUNCTIONAL WIREFRAME EXTRACTION

ee MIAG IDENTIFICATION AND GIPC ATTITUDE
DETERMINATION IN 00S

® INTEGRATION TESTING IN PROGRESS
@8 MODULE INTERFACES COMPLETE
®e NEW EVENT-DRIVEN OMV SEQUENCER GENERATED

® TEST CASE DESCRIPTION
ee THREE VEHICLES IN SAME ORBIT
oe OMY WITH CAMERA IN LOWER ORBIT

ee AS OMV APPROACHES TARGET, THE VISION
ALGORITHHMS WILL IDENTIFY OBJECT AND
COMPUTE ATTITUDE AND ATTITUDE RATES

— LinCom —~
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FUTURE EFFORT

® PERFORMANCE ANALYSIS OF VISION ALGORITHMS

e® INTRODUCE NOISE, ERROR, AND LAG TIME INTO WIREFRAME
EXTRACTION ROUTINE

®e ANALYZE RATE OF INPUT FROM VISION ALGORITHNS
TO ONV FSW (1.e. PROCESSING SPEED REQUIRED
FOR APPLICATIONS)

es ANALYZE ACCURACY REQUIREMENT FOR ORBITAL
OPERATIONS
es EXPAND OBJECT LIBRARY

® HARDWARE/SOFTWARE TESTING IN LABORATORY WITH
PROCESSING TIME ANALYSIS

® INTEGRATE OTHER VISION /7 ROBOTIC ALGORITHMS INTO
00S
eos NEW ATTITUDE DETERMINATION ROUTINES
e® RMS ALGORITHMS
eess KINEMATICS
see® SERVOS AND 6YROS

® INTEGRATE VISION/ROBOTICS ALGORITHMS WITH OTHER
MODELS

ee VISION + RMS + MMU = AUTONOMOUS ROBOT
s® VISION + SPACE STATION => TRAFFIC CONTROL

\ LinCom —




- ,— ROBOTIC SPACE SIMULATION

END OF PRESENTATION
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